On the Security of Biquadratic C^* Public-Key Cryptosystems

Patrick Felke

University of Applied Sciences Emden-Leer

September 2017

From C^* [to biquadratic](#page-7-0) C^*

[The Attack](#page-28-0)

[Further Research](#page-50-0)

From C^* [to biquadratic](#page-7-0) C^*

[The Attack](#page-28-0)

[Further Research](#page-50-0)

- Example 1 Let \mathbb{F}_q be a finite field of characteristic 2, i.e. $q = 2^m$ and \mathbb{F}_{q^m} an extenstion of degree n.
- ► Let α be s.t. $\mathbb{F}_{q^n} = \mathbb{F}_q[\alpha]$. Thus $A = \{1, \alpha, \dots, \alpha^{n-1}\}$ is a \mathbb{F}_q -Basis of \mathbb{F}_{q^n} .
- Example Let $\mathbb{F}_{q^n}[X]$ denote the univariate polynomialring over \mathbb{F}_{q^n} and $\mathbb{F}_q[x_1,\ldots,x_n]$ the multivariate polynomialring over \mathbb{F}_q .
- \blacktriangleright The multivariate degree of a polynomial $p(x_1, \ldots, x_n)$ is defined as

 $deg(p) :=$ $\max\{\sum_{j=1}^n i_j | \prod x_1^{i_1} \cdot x_2^{i_2} \cdots x_n^{i_n}$ is a monomial of $p\}.$

Representation Theorem (Univariate Case)

- 1. For every mapping M over \mathbb{F}_{q^n} exists a polynomial $P(X) \in \mathbb{F}_{q^n}[X]$ such that $M(a) = P(a), \forall a \in \mathbb{F}_{q^n}$.
- 2. The polynomial is unique, if the $deg(P(X)) \leq q^n 1$, i.e. if P is the remainder mod $X^{q^n} + X$.
- 3. This unique polynomial P is called the univariate representation of M .

Representation Theorem (Multivariate Case)

- 1. For every Mapping M and basis $A = \{1, \alpha, ..., \alpha^{n-1}\}\$ of \mathbb{F}_{q^n} exist multivariate polynomials $p_1(x_1, \ldots, x_n), \ldots, p_n(x_1, \ldots, x_n)$ such that
	- $M(a) = M(\sum_{i=1}^{n} a_i \alpha^{i-1}) = \sum_{i=1}^{n} p_i(a_1, \ldots, a_n) \alpha^{i-1}.$
- 2. The representation is unique if $0 \leq j_1, \ldots, j_n \leq q$ for every monomial $\prod x_1^{j_1} \cdot x_2^{j_2} \cdots x_n^{j_n}$ of p_i , i.e. if p_i is the remainder mod $x_1^q + x_1, \ldots, x_n^q + x_n$.
- 3. These unique polynomials p_1, \ldots, p_n are called the multivariate representation and mdeg (M) :=max{deg $(p_i), i = 1, ..., n$ } the multivariate degree of M (with respect to A).

Transformation Theorem

```
Let P(X) be the univariate and p_1, \ldots, p_n the multivariate
representation of a mapping M over \mathbb{F}_{q^n} with respect to our basis
A.
It is mdeg(M) equal to
max\{q-weight of X^j | X^j a monomial of P\}.Thereby the q-weight of X^j is defined as
```
 $\sum z_i, j = \sum_i z_i q^i, 0 \leq z_i < q(q{\rm -}$ adic representation).

 F^* The multivariate degree does not depend on A.

From C^* [to biquadratic](#page-7-0) C^*

[The Attack](#page-28-0)

[Further Research](#page-50-0)

► In 1988 Imai and Matsumoto introduced C^* , a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.

- ► In 1988 Imai and Matsumoto introduced C^* , a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- \blacktriangleright In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.

- ► In 1988 Imai and Matsumoto introduced C^* , a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- \blacktriangleright In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- \blacktriangleright Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C^* .

- ► In 1988 Imai and Matsumoto introduced C^* , a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- \blacktriangleright In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- \blacktriangleright Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C^* . This work was classified until 2001.

- ► In 1988 Imai and Matsumoto introduced C^* , a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- \blacktriangleright In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- \blacktriangleright Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C^* . This work was classified until 2001.
- ► Biquadratic C^* shares almost all properties of C^* .

- ► In 1988 Imai and Matsumoto introduced C^* , a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- \blacktriangleright In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- \blacktriangleright Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C^* . This work was classified until 2001.
- ► Biquadratic C^* shares almost all properties of C^* . **EF** No redundancy required as in HFE or decryption failures like in ABC-Schemes.

- ► In 1988 Imai and Matsumoto introduced C^* , a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- \blacktriangleright In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- \blacktriangleright Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C^* . This work was classified until 2001.
- ► Biquadratic C^* shares almost all properties of C^* . **ES** No redundancy required as in HFE or decryption failures like in ABC-Schemes.
- Its major drawback was its keysize (bigger than in HFE).

- ► In 1988 Imai and Matsumoto introduced C^* , a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- \blacktriangleright In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- \blacktriangleright Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C^* . This work was classified until 2001.
- ► Biquadratic C^* shares almost all properties of C^* . **ES** No redundancy required as in HFE or decryption failures like in ABC-Schemes.
- Its major drawback was its keysize (bigger than in HFE).
- Fine FOIS decided against usage of biquadratic C^* .

 \blacktriangleright Dobbertin, Felke published "Cryptochallenge 11" over 5000 \in as a part of the mystery twister competition in cooperation with Faugère.

- \blacktriangleright Dobbertin, Felke published "Cryptochallenge 11" over 5000 \in as a part of the mystery twister competition in cooperation with Faugère.
- \triangleright This challenge remained unbroken until today and the security of biquadratic C^* an open problem.

- \blacktriangleright Dobbertin, Felke published "Cryptochallenge 11" over 5000 \in as a part of the mystery twister competition in cooperation with Faugère.
- \triangleright This challenge remained unbroken until today and the security of biquadratic C^* an open problem.
- \triangleright Due to the initiative of NIST and ETSI to speed up the transition to post-quantum cryptography and loosen the constraints on the keysize multivariate cryptosystems have become of great interest again.

- \blacktriangleright Dobbertin, Felke published "Cryptochallenge 11" over 5000 \in as a part of the mystery twister competition in cooperation with Faugère.
- \triangleright This challenge remained unbroken until today and the security of biquadratic C^* an open problem.
- \triangleright Due to the initiative of NIST and ETSI to speed up the transition to post-quantum cryptography and loosen the constraints on the keysize multivariate cryptosystems have become of great interest again.

 E It is about time to resume its security analysis.

Given
$$
\mathbb{F}_{q^n} = \mathbb{F}_q[\alpha], q = 2^m
$$
.

Given $\mathbb{F}_{a^n} = \mathbb{F}_a[\alpha], q = 2^m$.

 \triangleright The central mapping is a bijective power mapping of the form $F(X) := X^{1 + q^{i_1} + q^{i_2} + q^{i_3}} \in \mathbb{F}_{q^n}[X]$ mit $0 < i_1 < i_2 < i_3 < n$, $\gcd(1+q^{i_1}+q^{i_2}+q^{i_3},q^n-1)=1.$ F^{-1} is of the form X^d with $0 \leq d < q^n-1$.

Given $\mathbb{F}_{a^n} = \mathbb{F}_a[\alpha], q = 2^m$.

- \triangleright The central mapping is a bijective power mapping of the form $F(X) := X^{1 + q^{i_1} + q^{i_2} + q^{i_3}} \in \mathbb{F}_{q^n}[X]$ mit $0 < i_1 < i_2 < i_3 < n$, $\gcd(1+q^{i_1}+q^{i_2}+q^{i_3},q^n-1)=1.$ F^{-1} is of the form X^d with $0 \leq d < q^n-1$.
- \blacktriangleright The secret key consists of two randomly chosen bijective, affine mappings S, T over \mathbb{F}_{q^n} .
- \blacktriangleright The public key is the multivariate representation $p_1(x_1, \ldots, x_n), \ldots, p_n(x_1, \ldots, x_n)$ of $P(X) := S \circ F \circ T$ with respect to $\{1, \alpha, \ldots, \alpha^{n-1}\}\$, i.e. mdeg=4.

Given $\mathbb{F}_{a^n} = \mathbb{F}_a[\alpha], q = 2^m$.

- \triangleright The central mapping is a bijective power mapping of the form $F(X) := X^{1 + q^{i_1} + q^{i_2} + q^{i_3}} \in \mathbb{F}_{q^n}[X]$ mit $0 < i_1 < i_2 < i_3 < n$, $\gcd(1+q^{i_1}+q^{i_2}+q^{i_3},q^n-1)=1.$ F^{-1} is of the form X^d with $0 \leq d < q^n-1$.
- \blacktriangleright The secret key consists of two randomly chosen bijective, affine mappings S, T over \mathbb{F}_{q^n} .
- \triangleright The public key is the multivariate representation $p_1(x_1, \ldots, x_n), \ldots, p_n(x_1, \ldots, x_n)$ of $P(X) := S \circ F \circ T$ with respect to $\{1, \alpha, \ldots, \alpha^{n-1}\}\)$, i.e. mdeg=4.

¤े In case of C^* the central mapping is of the form $X^{1+q^{i_1}}$ which explains Dobbertin's choice of the name.

Encryption/Decryption with biquadratic C^*

Encryption (public): $\mathcal{M} \longrightarrow P = T \circ F \circ S \longrightarrow C$ Decryption (secret): \uparrow S^{-1} $\left|T^{-1}\right|$ \mathbb{F}_{q^n} \mathbb{F}_{q^n} $\longleftrightarrow^{P=F^{-1}}$ \mathbb{F}_{q^n}

Encryption/Decryption with biquadratic C^*

Encryption (public): $M \frac{P = T \circ F \circ S}{P}$ Decryption (secret): \uparrow S^{-1} \downarrow $\left|T^{-1}\right|$ $\mathbb{F}_{q^n} \quad \begin{array}{ccc} &P{=}F^{-1} & \quad \mathbb{F}_{q^n} \end{array}$ \mathbb{Z} The system is broken if given a ciphertext b_1, \ldots, b_n the system of equations $p_1(x_1, \ldots, x_n) = b_1$. . . $p_n(x_1, \ldots, x_n) = b_n$ can be solved efficiently over \mathbb{F}_q . For biquadratic C^* this system is of mdeg 4 (C^* , mdeg 2)!

CryptoChallenge 11

CryptoChallenge 11 (2005)

- A base field \mathbb{F}_{2^4} .
- A large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.
- $d = 1 + q + q^3 + q^{12}.$
- Randomly chosen secret affin mappings S, T over $\mathbb{F}_{2^{100}}$.
- A 100 bit ciphertext (b_1, \ldots, b_{25}) together with the corresponding public key.

The person who would have submitted the correct solution before the end of the year 2005 would have won 5000 \in .

CryptoChallenge 11

CryptoChallenge 11 (2005)

- A base field \mathbb{F}_{2^4} .
- A large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.
- $d = 1 + q + q^3 + q^{12}.$
- Randomly chosen secret affin mappings S, T over $\mathbb{F}_{2^{100}}$.
- A 100 bit ciphertext (b_1, \ldots, b_{25}) together with the corresponding public key.

The person who would have submitted the correct solution before the end of the year 2005 would have won 5000 \in .

Remark. For the system in CryptoChallenge 11 we had block size: 100 bit public key length: 290 kb, private key length: 5,200 bit.

From C^* [to biquadratic](#page-7-0) C^*

[The Attack](#page-28-0)

[Further Research](#page-50-0)

The Attack

Given a ciphertext b_1, \ldots, b_n the system of equations $p_1(x_1, \ldots, x_n) = b_1$. . . $p_n(x_1,\ldots,x_n) = b_n$ has to be solved over \mathbb{F}_q .

 \blacktriangleright F_5 by Faugère is the state of the art algorithm to solve such equations.

The Attack

Given a ciphertext b_1, \ldots, b_n the system of equations $p_1(x_1, \ldots, x_n) = b_1$. .

 $p_n(x_1,\ldots,x_n) = b_n$ has to be solved over \mathbb{F}_q .

.

- \blacktriangleright F_5 by Faugère is the state of the art algorithm to solve such equations.
- \blacktriangleright Its complexity is $\mathcal{O}\left(\binom{n+D}{n} \right)$ $\binom{+D}{n}^\omega\Big)$, where $\omega:=2,373$ is the gaussian elimination constant.
- \blacktriangleright Its required memory is $\mathcal{O}\left(\binom{n+D}{n}\right)$ $\binom{+D}{n}^2$.
- \blacktriangleright D is the maximal multivariate degree generated during the execution of F_5 .

The Attack

Given a ciphertext b_1, \ldots, b_n the system of equations $p_1(x_1, \ldots, x_n) = b_1$. .

 $p_n(x_1,\ldots,x_n) = b_n$ has to be solved over \mathbb{F}_q .

.

- \triangleright F_5 by Faugère is the state of the art algorithm to solve such equations.
- \blacktriangleright Its complexity is $\mathcal{O}\left(\binom{n+D}{n} \right)$ $\binom{+D}{n}^\omega\Big)$, where $\omega:=2,373$ is the gaussian elimination constant.
- \blacktriangleright Its required memory is $\mathcal{O}\left(\binom{n+D}{n}\right)$ $\binom{+D}{n}^2$.
- \blacktriangleright D is the maximal multivariate degree generated during the execution of F_5 .
- \blacktriangleright The term order has to be degree-based.

Degree lexicographical ordering

 $\mathbb{R}^2 x_1 > x_2 > \cdots > x_n$

With \leq_{dlex} we denote the degree lexicographical ordering which is defined as follows:

 $x_1^{\alpha_1}\cdots x_n^{\alpha_n} <_{\mathsf{dlex}} x_1^{\beta_1}\cdots x_n^{\beta_n}$ iff $\mathsf{deg}(x_1^{\alpha_1}\cdots x_n^{\alpha_n}) < \mathsf{deg}(x_1^{\beta_1}\cdots x_n^{\beta_n})$ or in case of equality the leftmost nonzero entry of $(\beta_1 - \alpha_1, \ldots, \beta_n - \alpha_n)$ is positive. With It(f) we denote the leading term of f , which is the first term

that appears when the polynomial is listed according to \leq_{dlex} .

Determining D (Dubois, Gama, Hodges and Ding)

It is hard to determine D in advance for multivariate (crypto)systems.

Determining D (Dubois, Gama, Hodges and Ding)

- It is hard to determine D in advance for multivariate (crypto)systems.
- It is commonly accepted that the degree of regularity R yields a very good approximation for D, i.e. the complexity of F_5 can be estimated by $\mathcal{O}\left(\binom{n+R}{n}\right)$ ${n+R \choose n}^\omega$ and $\mathcal{O}\left({n+R \choose n} \right)$ $\binom{+R}{n}^2$.

Determining D (Dubois, Gama, Hodges and Ding)

- It is hard to determine D in advance for multivariate (crypto)systems.
- It is commonly accepted that the degree of regularity R yields a very good approximation for D, i.e. the complexity of F_5 can be estimated by $\mathcal{O}\left(\binom{n+R}{n}\right)$ ${n+R \choose n}^\omega$ and $\mathcal{O}\left({n+R \choose n} \right)$ $\binom{+R}{n}^2$.
- In Let q_1, \ldots, q_n be the multivariate representation of the central mapping. The degree of regularity for equations from the public key equals the degree of regularity of $g_1(x_1,\ldots,x_n) = \beta_1$

 $g_n(x_1, \ldots, x_n) = \beta_n$ for a proper choice of $(\beta_1, \ldots, \beta_n)$.

. . .

Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of $F(X)$, mdeg $(F(X)) = 4$).

- Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of $F(X)$, mdeg $(F(X)) = 4$).
	- Set $B := \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q)$ $\left(\begin{smallmatrix} q_1 \ 1 \end{smallmatrix} \right)$ and $B_k \subset B$ the set of polynomials which have a homogeneous representation of degree k mod x_1^q $x_1^q, \ldots, x_n^q.$

- Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of $F(X)$, mdeg $(F(X)) = 4$).
	- Set $B := \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q)$ $\left(\begin{smallmatrix} q_1 \ 1 \end{smallmatrix} \right)$ and $B_k \subset B$ the set of polynomials which have a homogeneous representation of degree k mod x_1^q $x_1^q, \ldots, x_n^q.$
	- \blacktriangleright For g_1^h,\ldots,g_n^h the mapping $\psi_k(g_1^h, \ldots, g_n^h) : B_k^n \to B_{k+4}$ $(b_1, \ldots, b_n) \mapsto \sum_i b_i g_i^h$ is linear.

- Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of $F(X)$, mdeg $(F(X)) = 4$).
	- Set $B := \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q)$ $\left(\begin{smallmatrix} q_1 \ 1 \end{smallmatrix} \right)$ and $B_k \subset B$ the set of polynomials which have a homogeneous representation of degree k mod x_1^q $x_1^q, \ldots, x_n^q.$
	- \blacktriangleright For g_1^h,\ldots,g_n^h the mapping $\psi_k(g_1^h, \ldots, g_n^h) : B_k^n \to B_{k+4}$ $(b_1, \ldots, b_n) \mapsto \sum_i b_i g_i^h$ is linear.
	- \blacktriangleright Let $T_k(g_1^h, \ldots, g_n^h)$ be the subspace of kernel $(\psi_k(g_1^h, \ldots, g_n^h))$ generated by
		- 1. $b \cdot (0, \ldots, 0, g_j^h, 0, \ldots, 0, g_i^h, 0, \ldots, 0), 1 \le i < j \le n, b \in B_k$ g_j^h the i -th entry and g_i^h the j -th.
		- 2. $b \cdot (0, \ldots, 0, g_i^{h^{q-1}}, 0, \ldots, 0), 1 \leq i \leq n, b \in B_{k-q-1}, g_i^{h^{q-1}}$ the i -th entry.

- Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of $F(X)$, mdeg $(F(X)) = 4$).
	- Set $B := \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q)$ $\left(\begin{smallmatrix} q_1 \ 1 \end{smallmatrix} \right)$ and $B_k \subset B$ the set of polynomials which have a homogeneous representation of degree k mod x_1^q $x_1^q, \ldots, x_n^q.$
	- \blacktriangleright For g_1^h,\ldots,g_n^h the mapping $\psi_k(g_1^h, \ldots, g_n^h) : B_k^n \to B_{k+4}$ $(b_1, \ldots, b_n) \mapsto \sum_i b_i g_i^h$ is linear.
	- \blacktriangleright Let $T_k(g_1^h, \ldots, g_n^h)$ be the subspace of kernel $(\psi_k(g_1^h, \ldots, g_n^h))$ generated by
		- 1. $b \cdot (0, \ldots, 0, g_j^h, 0, \ldots, 0, g_i^h, 0, \ldots, 0), 1 \le i < j \le n, b \in B_k$ g_j^h the i -th entry and g_i^h the j -th.
		- 2. $b \cdot (0, \ldots, 0, g_i^{h^{q-1}}, 0, \ldots, 0), 1 \leq i \leq n, b \in B_{k-q-1}, g_i^{h^{q-1}}$ the i -th entry.
	- \blacktriangleright The degree of regularity is $R(g_1^h, \ldots, g_n^h) :=$ $\min\{k+4|\mathsf{kernel}(\psi_k(g_1^h,\ldots,g_n^h))/T_k(g_1^h,\ldots,g_n^h)\neq 0\}.$

Basic Idea

Cut out trivial relations:

If the leading terms conforming a degree-based term ordering of e.g. $q_1 + \beta_1, q_2 + \beta_2$ have no common divisor then:

- \blacktriangleright The reduction in F_5 will be based on $(g_1 + \beta_1)(g_2 + \beta_2) + (g_2 + \beta_2)(g_1 + \beta_1) = 0.$
- \triangleright From this nothing is gained to find a solution.

Main Result

Biquadratic C^* is weak

Let p_1,\ldots,p_n be the public key of a biquadratic C^* public-key cryptosystem and b_1, \ldots, b_n a ciphertext. The complexity to find the plaintext a_1, \ldots, a_n is at most $\mathcal{O}\left(\binom{n+7}{n}\right)$ $\binom{+7}{n}^\omega\Big)$, $\omega=2,373$ and the required memory $\mathcal{O}\left(\binom{n+7}{n}\right)$ $\binom{+7}{n}^2$.

Main Result

Biquadratic C^* is weak

Let p_1,\ldots,p_n be the public key of a biquadratic C^* public-key cryptosystem and b_1, \ldots, b_n a ciphertext. The complexity to find the plaintext a_1, \ldots, a_n is at most $\mathcal{O}\left(\binom{n+7}{n}\right)$ $\binom{+7}{n}^\omega\Big)$, $\omega=2,373$ and the required memory $\mathcal{O}\left(\binom{n+7}{n}\right)$ $\binom{+7}{n}^2$.

Good news: We skip the proof

Main Result

Biquadratic C^* is weak

Let p_1,\ldots,p_n be the public key of a biquadratic C^* public-key cryptosystem and b_1, \ldots, b_n a ciphertext. The complexity to find the plaintext a_1, \ldots, a_n is at most $\mathcal{O}\left(\binom{n+7}{n}\right)$ $\binom{+7}{n}^\omega\Big)$, $\omega=2,373$ and the required memory $\mathcal{O}\left(\binom{n+7}{n}\right)$ $\binom{+7}{n}^2$.

Good news: We skip the proof and explain it with the help of Cryptochallenge 11 instead.

Example CryptoChallenge 11

- Base field \mathbb{F}_{2^4}
- \blacktriangleright Large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.

$$
\blacktriangleright d = 1 + q + q^3 + q^{12}.
$$

Example CryptoChallenge 11

- Base field \mathbb{F}_{2^4}
- \blacktriangleright Large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.

$$
\blacktriangleright d = 1 + q + q^3 + q^{12}.
$$

It is $F(X)=XX^qX^{q^3}X^{q^{12}}$ and thus $X^q X^{q^3} X^{q^{12}} F(X)^{q^{13}} + X^{q^{13}} X^{q^{14}} X^{q^{16}} F(X)$ $X^q X^{q^3} X^{q^{12}} \left(X X^{q^{13}} X^{q^{14}} X^{q^{16}} \right) + X^{q^{13}} X^{q^{14}} X^{q^{16}} \left(X X^q X^{q^3} X^{q^{12}} \right) = 0.$

Example CryptoChallenge 11

- Base field \mathbb{F}_{2^4}
- \blacktriangleright Large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.

$$
\blacktriangleright d = 1 + q + q^3 + q^{12}.
$$

It is $F(X)=XX^qX^{q^3}X^{q^{12}}$ and thus $X^q X^{q^3} X^{q^{12}} F(X)^{q^{13}} + X^{q^{13}} X^{q^{14}} X^{q^{16}} F(X)$ $X^q X^{q^3} X^{q^{12}} \left(X X^{q^{13}} X^{q^{14}} X^{q^{16}} \right) + X^{q^{13}} X^{q^{14}} X^{q^{16}} \left(X X^q X^{q^3} X^{q^{12}} \right) = 0.$ E^{max} The degree of regularity is 7 and we have the following

Corollary

Cryptochallenge 11 can be broken in running time $\mathcal{O}\left(\binom{25+7}{25}^{2,373}\right)\approx 2^{52}$ and with a required memory of $\mathcal{O}\left(\binom{25+7}{25}^2\right)\approx 1,3$ Tb.

Corollary

Cryptochallenge 11 can be broken in running time \mathcal{O} $\left(\binom{25+7}{25}^{2,373} \right) \approx 2^{52}$ and with a required memory of $\mathcal{O}\left(\binom{25+7}{25}^2\right)\approx 1,3$ Tb.

A When Dobbertin and I developed this challenge in 2005 we were convinced that biquadratic C^* is strong in general.

From C^* [to biquadratic](#page-7-0) C^*

[The Attack](#page-28-0)

[Further Research](#page-50-0)

Further Research/Work in Progress

 \blacktriangleright Proof a strong bound on D with the help of the above used syszygies directly for these simple bijective power mappings to better understand the degree of regularity.

Further Research/Work in Progress

 \blacktriangleright Proof a strong bound on D with the help of the above used syszygies directly for these simple bijective power mappings to better understand the degree of regularity.

Any questions?

