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Preliminaries

I Let Fq be a finite field of characteristic 2, i.e. q = 2m and Fqn
an extenstion of degree n.

I Let α be s.t. Fqn = Fq[α]. Thus A = {1, α, . . . , αn−1} is a
Fq-Basis of Fqn .

I Let Fqn [X] denote the univariate polynomialring over Fqn and
Fq[x1, . . . , xn] the multivariate polynomialring over Fq.

I The multivariate degree of a polynomial p(x1, . . . , xn) is
defined as
deg(p) :=
max{

∑n
j=1 ij |

∏
xi11 · x

i2
2 · · ·xinn is a monomial of p}.
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Preliminaries

Representation Theorem (Univariate Case)

1. For every mapping M over Fqn exists a polynomial
P (X) ∈ Fqn [X] such that M(a) = P (a),∀a ∈ Fqn .

2. The polynomial is unique, if the deg(P (X)) ≤ qn − 1,
i.e. if P is the remainder mod Xqn +X.

3. This unique polynomial P is called the univariate
representation of M .
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Preliminaries

Representation Theorem (Multivariate Case)

1. For every Mapping M and basis A = {1, α, . . . , αn−1} of Fqn
exist multivariate polynomials
p1(x1, . . . , xn), . . . , pn(x1, . . . , xn) such that
M(a) =M(

∑n
i=1 aiα

i−1) =
∑n

i=1 pi(a1, . . . , an)α
i−1.

2. The representation is unique if 0 ≤ j1, . . . , jn < q for every
monomial

∏
xj11 · x

j2
2 · · ·x

jn
n of pi,

i.e. if pi is the remainder mod xq1 + x1, . . . , x
q
n + xn.

3. These unique polynomials p1, . . . , pn are called the multivariate
representation and mdeg(M):=max{deg(pi), i = 1, . . . , n} the
multivariate degree of M (with respect to A).
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Preliminaries

Transformation Theorem
Let P (X) be the univariate and p1, . . . , pn the multivariate
representation of a mapping M over Fqn with respect to our basis
A.
It is mdeg(M) equal to
max{q-weight of Xj | Xj a monomial of P}.
Thereby the q-weight of Xj is defined as∑
zi, j =

∑
i ziq

i, 0 ≤ zi < q(q−adic representation).

�The multivariate degree does not depend on A.
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From C∗ to biquadratic C∗

I In 1988 Imai and Matsumoto introduced C∗, a very elegant
multivariate public-key cryptosystem resistent against quantum
computer aided attacks.

I In 1993 Dobbertin analysed it to check if it can be employed in
national crypto devices while he was working for the Federal
Office for Information Security (FOIS) in Germany.

I Thereby he broke it (Patarin in ‘95) and introduced an
alternative called biquadratic C∗.This work was classified until
2001.

I Biquadratic C∗ shares almost all properties of C∗.
�No redundancy required as in HFE or decryption failures like
in ABC-Schemes.

I Its major drawback was its keysize (bigger than in HFE).
I The FOIS decided against usage of biquadratic C∗.
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From C∗ to biquadratic C∗

I Dobbertin, Felke published “Cryptochallenge 11” over 5000 e
as a part of the mystery twister competition in cooperation
with Faugère.

I This challenge remained unbroken until today and the security
of biquadratic C∗ an open problem.

I Due to the initiative of NIST and ETSI to speed up the
transition to post-quantum cryptography and loosen the
constraints on the keysize multivariate cryptosystems have
become of great interest again.

�It is about time to resume its security analysis.
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Biquadratic C∗

Given Fqn = Fq[α], q = 2m.

I The central mapping is a bijective power mapping of the form
F (X) := X1+qi1+qi2+qi3 ∈ Fqn [X] mit 0 < i1 < i2 < i3 < n,
gcd(1 + qi1 + qi2 + qi3 , qn − 1) = 1.
F−1 is of the form Xd with 0 ≤ d < qn − 1.

I The secret key consists of two randomly chosen bijective,
affine mappings S, T over Fqn .

I The public key is the multivariate representation
p1(x1, . . . , xn), . . . , pn(x1, . . . , xn) of P (X) := S ◦ F ◦ T with
respect to {1, α, . . . , αn−1}, i.e. mdeg=4.

�In case of C∗ the central mapping is of the form X1+qi1 which
explains Dobbertin’s choice of the name.
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Encryption/Decryption with biquadratic C∗

Encryption (public): M P=T◦F◦S−−−−−−−−→ C

Decryption (secret):
xS−1

yT−1

Fqn
P=F−1

←−−−−−−−− Fqn

A
The system is broken if given a ciphertext b1, . . . , bn the system of
equations
p1(x1, . . . , xn) = b1

...
pn(x1, . . . , xn) = bn
can be solved efficiently over Fq.
For biquadratic C∗ this system is of mdeg 4 (C∗, mdeg 2)!

12 / 25



Encryption/Decryption with biquadratic C∗

Encryption (public): M P=T◦F◦S−−−−−−−−→ C

Decryption (secret):
xS−1

yT−1

Fqn
P=F−1

←−−−−−−−− Fqn

A
The system is broken if given a ciphertext b1, . . . , bn the system of
equations
p1(x1, . . . , xn) = b1

...
pn(x1, . . . , xn) = bn
can be solved efficiently over Fq.
For biquadratic C∗ this system is of mdeg 4 (C∗, mdeg 2)!

12 / 25



CryptoChallenge 11

CryptoChallenge 11 (2005)

I A base field F24 .

I A large field F2100 , i.e. an extension of degree 25.
I d = 1 + q + q3 + q12.

I Randomly chosen secret affin mappings S, T over F2100 .

I A 100 bit ciphertext (b1, . . . , b25) together with the
corresponding public key.

The person who would have submitted the correct solution before
the end of the year 2005 would have won 5000e.

Remark. For the system in CryptoChallenge 11 we had
block size: 100 bit
public key length: 290 kb,
private key length: 5,200 bit.
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The Attack
Given a ciphertext b1, . . . , bn the system of equations
p1(x1, . . . , xn) = b1

...
pn(x1, . . . , xn) = bn
has to be solved over Fq.

I F5 by Faugère is the state of the art algorithm to solve such
equations.

I Its complexity is O
((

n+D
n

)ω)
, where ω := 2, 373 is the

gaussian elimination constant.

I Its required memory is O
((

n+D
n

)2)
.

I D is the maximal multivariate degree generated during the
execution of F5.

I The term order has to be degree-based.
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Degree lexicographical ordering

With <dlex we denote the degree lexicographical ordering which is
defined as follows:
xα1
1 · · ·xαn

n <dlex x
β1
1 · · ·x

βn
n iff deg(xα1

1 · · ·xαn
n ) < deg(xβ11 · · ·x

βn
n )

or in case of equality the leftmost nonzero entry of
(β1 − α1, . . . , βn − αn) is positive.
With lt(f) we denote the leading term of f , which is the first term
that appears when the polynomial is listed according to <dlex.

�x1 > x2 > · · · > xn
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Determining D (Dubois, Gama, Hodges and Ding)

I It is hard to determine D in advance for multivariate
(crypto)systems.

I It is commonly accepted that the degree of regularity R yields
a very good approximation for D, i.e. the complexity of F5 can
be estimated by O

((
n+R
n

)ω)
and O

((
n+R
n

)2)
.

I Let g1, . . . , gn be the multivariate representation of the central
mapping. The degree of regularity for equations from the
public key equals the degree of regularity of
g1(x1, . . . , xn) = β1

...
gn(x1, . . . , xn) = βn
for a proper choice of (β1, . . . , βn).

17 / 25



Determining D (Dubois, Gama, Hodges and Ding)

I It is hard to determine D in advance for multivariate
(crypto)systems.

I It is commonly accepted that the degree of regularity R yields
a very good approximation for D, i.e. the complexity of F5 can
be estimated by O

((
n+R
n

)ω)
and O

((
n+R
n

)2)
.

I Let g1, . . . , gn be the multivariate representation of the central
mapping. The degree of regularity for equations from the
public key equals the degree of regularity of
g1(x1, . . . , xn) = β1

...
gn(x1, . . . , xn) = βn
for a proper choice of (β1, . . . , βn).

17 / 25



Determining D (Dubois, Gama, Hodges and Ding)

I It is hard to determine D in advance for multivariate
(crypto)systems.

I It is commonly accepted that the degree of regularity R yields
a very good approximation for D, i.e. the complexity of F5 can
be estimated by O

((
n+R
n

)ω)
and O

((
n+R
n

)2)
.

I Let g1, . . . , gn be the multivariate representation of the central
mapping. The degree of regularity for equations from the
public key equals the degree of regularity of
g1(x1, . . . , xn) = β1

...
gn(x1, . . . , xn) = βn
for a proper choice of (β1, . . . , βn).

17 / 25



Degree of Regularity by Hodges (simplified version)
Let ghi denote the homogeneous part of highest degree of gi (multi.
rep. of F (X), mdeg(F (X)) = 4).

I Set B := Fq[x1, . . . , xn]/(xq1, . . . , x
q
n) and Bk ⊂ B the set of

polynomials which have a homogeneous representation of
degree k mod xq1, . . . , x

q
n.

I For gh1 , . . . , g
h
n the mapping

ψk(g
h
1 , . . . , g

h
n) : B

n
k → Bk+4

(b1, . . . , bn) 7→
∑

i big
h
i

is linear.
I Let Tk(gh1 , . . . , g

h
n) be the subspace of kernel(ψk(gh1 , . . . , g

h
n))

generated by
1. b · (0, . . . , 0, ghj , 0, . . . , 0, ghi , 0, . . . , 0), 1 ≤ i < j ≤ n, b ∈ Bk,

ghj the i-th entry and ghi the j-th.
2. b · (0, . . . , 0, ghq−1

i , 0, . . . , 0), 1 ≤ i ≤ n, b ∈ Bk−q−1, gh
q−1

i the
i-th entry.

I The degree of regularity is R(gh1 , . . . , g
h
n) :=

min{k + 4|kernel(ψk(gh1 , . . . , ghn))/Tk(gh1 , . . . , ghn) 6= 0}.
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Degree of Regularity by Hodges (simplified version)
Let ghi denote the homogeneous part of highest degree of gi (multi.
rep. of F (X), mdeg(F (X)) = 4).

I Set B := Fq[x1, . . . , xn]/(xq1, . . . , x
q
n) and Bk ⊂ B the set of

polynomials which have a homogeneous representation of
degree k mod xq1, . . . , x

q
n.

I For gh1 , . . . , g
h
n the mapping

ψk(g
h
1 , . . . , g

h
n) : B

n
k → Bk+4

(b1, . . . , bn) 7→
∑

i big
h
i

is linear.
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Basic Idea
Cut out trivial relations:
If the leading terms conforming a degree-based term ordering of
e.g. g1 + β1, g2 + β2 have no common divisor then:

I The reduction in F5 will be based on
(g1 + β1)(g2 + β2) + (g2 + β2)(g1 + β1) = 0.

I From this nothing is gained to find a solution.
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Main Result

Biquadratic C∗ is weak

Let p1, . . . , pn be the public key of a biquadratic C∗ public-key
cryptosystem and b1, . . . , bn a ciphertext.
The complexity to find the plaintext a1, . . . , an is at most
O
((

n+7
n

)ω)
, ω = 2, 373 and the required memory O

((
n+7
n

)2)
.

Good news: We skip the proof
and explain it with the help of Cryptochallenge 11 instead.
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Example CryptoChallenge 11

I Base field F24

I Large field F2100 , i.e. an extension of degree 25.
I d = 1 + q + q3 + q12.

It is F (X) = XXqXq3Xq12 and thus
XqXq3Xq12F (X)q

13
+Xq13Xq14Xq16F (X)

XqXq3Xq12
(
XXq13Xq14Xq16

)
+Xq13Xq14Xq16

(
XXqXq3Xq12

)
= 0.

�The degree of regularity is 7 and we have the following
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Corollary

Cryptochallenge 11 can be broken in running time
O
((

25+7
25

)2,373) ≈ 252 and with a required memory of

O
((

25+7
25

)2) ≈ 1, 3 Tb.

A When Dobbertin and I developed this challenge in 2005 we were
convinced that biquadratic C∗ is strong in general.
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Further Research/Work in Progress

I Proof a strong bound on D with the help of the above used
syszygies directly for these simple bijective power mappings to
better understand the degree of regularity.
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Any questions?
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