On the Security of Biquadratic C^* Public-Key Cryptosystems

Patrick Felke

University of Applied Sciences Emden-Leer

September 2017

From C^{\ast} to biquadratic C^{\ast}

The Attack

Further Research

From C^* to biquadratic C^*

The Attack

Further Research

- ▶ Let \mathbb{F}_q be a finite field of characteristic 2, i.e. $q = 2^m$ and \mathbb{F}_{q^n} an extenstion of degree n.
- ▶ Let α be s.t. $\mathbb{F}_{q^n} = \mathbb{F}_q[\alpha]$. Thus $A = \{1, \alpha, \dots, \alpha^{n-1}\}$ is a \mathbb{F}_q -Basis of \mathbb{F}_{q^n} .
- Let $\mathbb{F}_{q^n}[X]$ denote the univariate polynomialring over \mathbb{F}_{q^n} and $\mathbb{F}_q[x_1, \ldots, x_n]$ the multivariate polynomialring over \mathbb{F}_q .
- ▶ The multivariate degree of a polynomial $p(x_1, \ldots, x_n)$ is defined as

 $\deg(p) := \max\{\sum_{j=1}^{n} i_j | \prod x_1^{i_1} \cdot x_2^{i_2} \cdots x_n^{i_n} \text{ is a monomial of } p\}.$

Representation Theorem (Univariate Case)

- 1. For every mapping M over \mathbb{F}_{q^n} exists a polynomial $P(X) \in \mathbb{F}_{q^n}[X]$ such that $M(a) = P(a), \forall a \in \mathbb{F}_{q^n}$.
- 2. The polynomial is unique, if the $\deg(P(X)) \le q^n 1$, i.e. if P is the remainder mod $X^{q^n} + X$.
- 3. This unique polynomial P is called the univariate representation of M.

Representation Theorem (Multivariate Case)

- 1. For every Mapping M and basis $A=\{1,\alpha,\ldots,\alpha^{n-1}\}$ of \mathbb{F}_{q^n} exist multivariate polynomials
 - $p_1(x_1,...,x_n),...,p_n(x_1,...,x_n)$ such that $M(a) = M(\sum_{i=1}^n a_i \alpha^{i-1}) = \sum_{i=1}^n p_i(a_1,...,a_n) \alpha^{i-1}.$
- 2. The representation is unique if $0 \le j_1, \ldots, j_n < q$ for every monomial $\prod x_1^{j_1} \cdot x_2^{j_2} \cdots x_n^{j_n}$ of p_i , i.e. if p_i is the remainder mod $x_1^q + x_1, \ldots, x_n^q + x_n$.
- 3. These unique polynomials p_1, \ldots, p_n are called the multivariate representation and $mdeg(M):=max\{deg(p_i), i = 1, \ldots, n\}$ the multivariate degree of M (with respect to A).

Transformation Theorem

Let P(X) be the univariate and p_1, \ldots, p_n the multivariate representation of a mapping M over \mathbb{F}_{q^n} with respect to our basis A.

It is mdeg(M) equal to $max\{q$ -weight of $X^j | X^j$ a monomial of $P\}$. Thereby the q-weight of X^j is defined as $\sum z_i, j = \sum_i z_i q^i, 0 \le z_i < q(q$ -adic representation).

The multivariate degree does not depend on A.

From C^{\ast} to biquadratic C^{\ast}

The Attack

Further Research

In 1988 Imai and Matsumoto introduced C*, a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.

- In 1988 Imai and Matsumoto introduced C*, a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.

- In 1988 Imai and Matsumoto introduced C*, a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- ► Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C*.

- In 1988 Imai and Matsumoto introduced C*, a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- ► Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C*. This work was classified until 2001.

- In 1988 Imai and Matsumoto introduced C*, a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- ► Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C*. This work was classified until 2001.
- Biquadratic C^* shares almost all properties of C^* .

- In 1988 Imai and Matsumoto introduced C*, a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- ► Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C*. This work was classified until 2001.
- Biquadratic C* shares almost all properties of C*.
 Provide the state of the state o

- In 1988 Imai and Matsumoto introduced C*, a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- ► Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C*. This work was classified until 2001.
- Biquadratic C* shares almost all properties of C*.
 Provide the state of the state o
- Its major drawback was its keysize (bigger than in HFE).

- In 1988 Imai and Matsumoto introduced C*, a very elegant multivariate public-key cryptosystem resistent against quantum computer aided attacks.
- In 1993 Dobbertin analysed it to check if it can be employed in national crypto devices while he was working for the Federal Office for Information Security (FOIS) in Germany.
- ▶ Thereby he broke it (Patarin in '95) and introduced an alternative called biquadratic C*. This work was classified until 2001.
- Biquadratic C* shares almost all properties of C*.
 Provide the state of the state o
- Its major drawback was its keysize (bigger than in HFE).
- ▶ The FOIS decided against usage of biquadratic C^{*}.

► Dobbertin, Felke published "Cryptochallenge 11" over 5000 € as a part of the mystery twister competition in cooperation with Faugère.

- ► Dobbertin, Felke published "Cryptochallenge 11" over 5000 € as a part of the mystery twister competition in cooperation with Faugère.
- ► This challenge remained unbroken until today and the security of biquadratic C* an open problem.

- ► Dobbertin, Felke published "Cryptochallenge 11" over 5000 € as a part of the mystery twister competition in cooperation with Faugère.
- ► This challenge remained unbroken until today and the security of biquadratic C* an open problem.
- Due to the initiative of NIST and ETSI to speed up the transition to post-quantum cryptography and loosen the constraints on the keysize multivariate cryptosystems have become of great interest again.

- ► Dobbertin, Felke published "Cryptochallenge 11" over 5000 € as a part of the mystery twister competition in cooperation with Faugère.
- ► This challenge remained unbroken until today and the security of biquadratic C* an open problem.
- Due to the initiative of NIST and ETSI to speed up the transition to post-quantum cryptography and loosen the constraints on the keysize multivariate cryptosystems have become of great interest again.

It is about time to resume its security analysis.

 ${\rm Biquadratic}\ C^*$

Given
$$\mathbb{F}_{q^n} = \mathbb{F}_q[\alpha], q = 2^m$$
.

Biquadratic C^*

Given $\mathbb{F}_{q^n} = \mathbb{F}_q[\alpha], q = 2^m$.

▶ The central mapping is a bijective power mapping of the form $F(X) := X^{1+q^{i_1}+q^{i_2}+q^{i_3}} \in \mathbb{F}_{q^n}[X] \text{ mit } 0 < i_1 < i_2 < i_3 < n$, $gcd(1+q^{i_1}+q^{i_2}+q^{i_3},q^n-1) = 1$. F^{-1} is of the form X^d with $0 \le d < q^n - 1$.

Biquadratic C^*

Given $\mathbb{F}_{q^n} = \mathbb{F}_q[\alpha], q = 2^m$.

- ▶ The central mapping is a bijective power mapping of the form $F(X) := X^{1+q^{i_1}+q^{i_2}+q^{i_3}} \in \mathbb{F}_{q^n}[X] \text{ mit } 0 < i_1 < i_2 < i_3 < n,$ $\gcd(1+q^{i_1}+q^{i_2}+q^{i_3},q^n-1) = 1.$ F^{-1} is of the form X^d with $0 \le d < q^n - 1.$
- ► The secret key consists of two randomly chosen bijective, affine mappings *S*, *T* over \mathbb{F}_{q^n} .
- ► The public key is the multivariate representation $p_1(x_1, \ldots, x_n), \ldots, p_n(x_1, \ldots, x_n)$ of $P(X) := S \circ F \circ T$ with respect to $\{1, \alpha, \ldots, \alpha^{n-1}\}$, i.e. mdeg=4.

Biquadratic C^*

Given $\mathbb{F}_{q^n} = \mathbb{F}_q[\alpha], q = 2^m$.

- ▶ The central mapping is a bijective power mapping of the form $F(X) := X^{1+q^{i_1}+q^{i_2}+q^{i_3}} \in \mathbb{F}_{q^n}[X] \text{ mit } 0 < i_1 < i_2 < i_3 < n$, $gcd(1+q^{i_1}+q^{i_2}+q^{i_3},q^n-1) = 1$. F^{-1} is of the form X^d with $0 \le d < q^n - 1$.
- ► The secret key consists of two randomly chosen bijective, affine mappings *S*, *T* over \mathbb{F}_{q^n} .
- ► The public key is the multivariate representation $p_1(x_1, \ldots, x_n), \ldots, p_n(x_1, \ldots, x_n)$ of $P(X) := S \circ F \circ T$ with respect to $\{1, \alpha, \ldots, \alpha^{n-1}\}$, i.e. mdeg=4.

For a case of C^* the central mapping is of the form $X^{1+q^{i_1}}$ which explains Dobbertin's choice of the name.

Encryption/Decryption with biquadratic C^*

Encryption (public): $\mathcal{M} \xrightarrow{P=T \circ F \circ S} \mathcal{C}$ Decryption (secret): $\uparrow S^{-1} \qquad \qquad \downarrow T^{-1}$ $\mathbb{F}_{q^n} \xleftarrow{P=F^{-1}} \mathbb{F}_{q^n}$

Encryption/Decryption with biquadratic C^*

Encryption (public): $\mathcal{M} \xrightarrow{P=T \circ F \circ S} \mathcal{C}$ Decryption (secret): $\uparrow S^{-1} \qquad \qquad \qquad \downarrow T^{-1}$ $\mathbb{F}_{q^n} \xleftarrow{P=F^{-1}} \mathbb{F}_{q^n}$

E The system is broken if given a ciphertext b_1, \ldots, b_n the system of equations

 $p_1(x_1,\ldots,x_n) = b_1$

 $p_n(x_1,...,x_n) = b_n$ can be solved efficiently over \mathbb{F}_q . For biquadratic C^* this system is of mdeg 4 (C^* , mdeg 2)!

CryptoChallenge 11

CryptoChallenge 11 (2005)

- ► A base field 𝔽₂₄.
- A large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.
- ▶ $d = 1 + q + q^3 + q^{12}$.
- Randomly chosen secret affin mappings S, T over $\mathbb{F}_{2^{100}}$.
- ► A 100 bit ciphertext (*b*₁,...,*b*₂₅) together with the corresponding public key.

The person who would have submitted the correct solution before the end of the year 2005 would have won $5000 \in$.

CryptoChallenge 11

CryptoChallenge 11 (2005)

- ► A base field 𝔽₂₄.
- A large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.
- ▶ $d = 1 + q + q^3 + q^{12}$.
- Randomly chosen secret affin mappings S, T over $\mathbb{F}_{2^{100}}$.
- ► A 100 bit ciphertext (*b*₁,...,*b*₂₅) together with the corresponding public key.

The person who would have submitted the correct solution before the end of the year 2005 would have won $5000 \in$.

Remark. For the system in CryptoChallenge 11 we had
block size:100 bitpublic key length:290 kb,private key length:5,200 bit.

From C^* to biquadratic C^*

The Attack

Further Research

The Attack

Given a ciphertext b_1, \ldots, b_n the system of equations $p_1(x_1, \ldots, x_n) = b_1$ \vdots $p_n(x_1, \ldots, x_n) = b_n$ has to be solved over \mathbb{F}_q .

► F₅ by Faugère is the state of the art algorithm to solve such equations.

The Attack

Given a ciphertext b_1, \ldots, b_n the system of equations $p_1(x_1, \ldots, x_n) = b_1$

 $p_n(x_1,\ldots,x_n) = b_n$ has to be solved over \mathbb{F}_q .

- ► F₅ by Faugère is the state of the art algorithm to solve such equations.
- ▶ Its complexity is $\mathcal{O}\left(\binom{n+D}{n}^{\omega}\right)$, where $\omega := 2,373$ is the gaussian elimination constant.
- ► Its required memory is $\mathcal{O}\left(\binom{n+D}{n}^2\right)$.
- ► *D* is the maximal multivariate degree generated during the execution of *F*₅.

The Attack

Given a ciphertext b_1, \ldots, b_n the system of equations $p_1(x_1, \ldots, x_n) = b_1$

 $p_n(x_1,\ldots,x_n) = b_n$ has to be solved over \mathbb{F}_q .

- ► F₅ by Faugère is the state of the art algorithm to solve such equations.
- ▶ Its complexity is $\mathcal{O}\left(\binom{n+D}{n}^{\omega}\right)$, where $\omega := 2,373$ is the gaussian elimination constant.
- ► Its required memory is $\mathcal{O}\left(\binom{n+D}{n}^2\right)$.
- ► *D* is the maximal multivariate degree generated during the execution of *F*₅.
- The term order has to be degree-based.

Degree lexicographical ordering

With $<_{\rm dlex}$ we denote the degree lexicographical ordering which is defined as follows:

 $\begin{array}{l} x_1^{\alpha_1}\cdots x_n^{\alpha_n}<_{\mathsf{dlex}} x_1^{\beta_1}\cdots x_n^{\beta_n} \text{iff } \deg(x_1^{\alpha_1}\cdots x_n^{\alpha_n})<\deg(x_1^{\beta_1}\cdots x_n^{\beta_n})\\ \text{or in case of equality the leftmost nonzero entry of}\\ (\beta_1-\alpha_1,\ldots,\beta_n-\alpha_n) \text{ is positive.}\\ \text{With } \mathsf{lt}(f) \text{ we denote the leading term of } f, \text{ which is the first term} \end{array}$

that appears when the polynomial is listed according to $<_{\rm dlex}$

 $x_1 > x_2 > \dots > x_n$

Determining D (Dubois, Gama, Hodges and Ding)

It is hard to determine D in advance for multivariate (crypto)systems.

Determining D (Dubois, Gama, Hodges and Ding)

- It is hard to determine D in advance for multivariate (crypto)systems.
- ► It is commonly accepted that the degree of regularity R yields a very good approximation for D, i.e. the complexity of F_5 can be estimated by $\mathcal{O}\left(\binom{n+R}{n}^{\omega}\right)$ and $\mathcal{O}\left(\binom{n+R}{n}^2\right)$.

Determining D (Dubois, Gama, Hodges and Ding)

- It is hard to determine D in advance for multivariate (crypto)systems.
- ► It is commonly accepted that the degree of regularity R yields a very good approximation for D, i.e. the complexity of F_5 can be estimated by $\mathcal{O}\left(\binom{n+R}{n}^{\omega}\right)$ and $\mathcal{O}\left(\binom{n+R}{n}^2\right)$.
- Let g₁,..., g_n be the multivariate representation of the central mapping. The degree of regularity for equations from the public key equals the degree of regularity of g₁(x₁,...,x_n) = β₁

 $g_n(x_1,\ldots,x_n) = \beta_n$ for a proper choice of (β_1,\ldots,β_n) .

Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of F(X), mdeg(F(X)) = 4).

- Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of F(X), mdeg(F(X)) = 4).
 - ▶ Set $B := \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q, \ldots, x_n^q)$ and $B_k \subset B$ the set of polynomials which have a homogeneous representation of degree $k \mod x_1^q, \ldots, x_n^q$.

- Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of F(X), mdeg(F(X)) = 4).
 - ▶ Set $B := \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q, \ldots, x_n^q)$ and $B_k \subset B$ the set of polynomials which have a homogeneous representation of degree $k \mod x_1^q, \ldots, x_n^q$.
 - ► For g_1^h, \ldots, g_n^h the mapping $\psi_k(g_1^h, \ldots, g_n^h) : B_k^n \to B_{k+4}$ $(b_1, \ldots, b_n) \mapsto \sum_i b_i g_i^h$ is linear.

- Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of F(X), mdeg(F(X)) = 4).
 - ▶ Set $B := \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q, \ldots, x_n^q)$ and $B_k \subset B$ the set of polynomials which have a homogeneous representation of degree $k \mod x_1^q, \ldots, x_n^q$.
 - ► For g_1^h, \ldots, g_n^h the mapping $\psi_k(g_1^h, \ldots, g_n^h) : B_k^n \to B_{k+4}$ $(b_1, \ldots, b_n) \mapsto \sum_i b_i g_i^h$ is linear.
 - Let $T_k(g_1^h, \ldots, g_n^h)$ be the subspace of kernel $(\psi_k(g_1^h, \ldots, g_n^h))$ generated by
 - 1. $b \cdot (0, \ldots, 0, g_j^h, 0, \ldots, 0, g_i^h, 0, \ldots, 0), 1 \le i < j \le n, b \in B_k,$ g_j^h the *i*-th entry and g_i^h the *j*-th.
 - 2. $b \cdot (0, \dots, 0, g_i^{h^{q-1}}, 0, \dots, 0), 1 \le i \le n, b \in B_{k-q-1}, g_i^{h^{q-1}}$ the *i*-th entry.

- Let g_i^h denote the homogeneous part of highest degree of g_i (multi. rep. of F(X), mdeg(F(X)) = 4).
 - ▶ Set $B := \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q, \ldots, x_n^q)$ and $B_k \subset B$ the set of polynomials which have a homogeneous representation of degree $k \mod x_1^q, \ldots, x_n^q$.
 - ► For g_1^h, \ldots, g_n^h the mapping $\psi_k(g_1^h, \ldots, g_n^h) : B_k^n \to B_{k+4}$ $(b_1, \ldots, b_n) \mapsto \sum_i b_i g_i^h$ is linear.
 - Let $T_k(g_1^h, \ldots, g_n^h)$ be the subspace of kernel $(\psi_k(g_1^h, \ldots, g_n^h))$ generated by
 - 1. $b \cdot (0, \dots, 0, g_j^h, 0, \dots, 0, g_i^h, 0, \dots, 0), 1 \le i < j \le n, b \in B_k,$ g_j^h the *i*-th entry and g_i^h the *j*-th.
 - 2. $b \cdot (0, \dots, 0, g_i^{h^{q-1}}, 0, \dots, 0), 1 \le i \le n, b \in B_{k-q-1}, g_i^{h^{q-1}}$ the *i*-th entry.
 - The degree of regularity is $R(g_1^h, \ldots, g_n^h) := \min\{k+4 | \text{kernel}(\psi_k(g_1^h, \ldots, g_n^h))/T_k(g_1^h, \ldots, g_n^h) \neq 0\}.$

Basic Idea

Cut out trivial relations:

If the leading terms conforming a degree-based term ordering of e.g. $g_1+\beta_1,g_2+\beta_2$ have no common divisor then:

- ► The reduction in F_5 will be based on $(g_1 + \beta_1)(g_2 + \beta_2) + (g_2 + \beta_2)(g_1 + \beta_1) = 0.$
- From this nothing is gained to find a solution.

Main Result

Biquadratic C^* is weak

Let p_1, \ldots, p_n be the public key of a biquadratic C^* public-key cryptosystem and b_1, \ldots, b_n a ciphertext. The complexity to find the plaintext a_1, \ldots, a_n is at most $\mathcal{O}\left(\binom{n+7}{n}^{\omega}\right), \omega = 2,373$ and the required memory $\mathcal{O}\left(\binom{n+7}{n}^2\right)$.

Main Result

Biquadratic C^* is weak

Let p_1, \ldots, p_n be the public key of a biquadratic C^* public-key cryptosystem and b_1, \ldots, b_n a ciphertext. The complexity to find the plaintext a_1, \ldots, a_n is at most $\mathcal{O}\left(\binom{n+7}{n}^{\omega}\right), \omega = 2,373$ and the required memory $\mathcal{O}\left(\binom{n+7}{n}^2\right)$.

Good news: We skip the proof

Main Result

Biquadratic C^* is weak

Let p_1, \ldots, p_n be the public key of a biquadratic C^* public-key cryptosystem and b_1, \ldots, b_n a ciphertext. The complexity to find the plaintext a_1, \ldots, a_n is at most $\mathcal{O}\left(\binom{n+7}{n}^{\omega}\right), \omega = 2,373$ and the required memory $\mathcal{O}\left(\binom{n+7}{n}^2\right)$.

Good news: We skip the proof and explain it with the help of Cryptochallenge 11 instead.

Example CryptoChallenge 11

- Base field \mathbb{F}_{2^4}
- Large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.

$$\blacktriangleright \ d = 1 + q + q^3 + q^{12}$$

Example CryptoChallenge 11

- Base field \mathbb{F}_{2^4}
- Large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.

►
$$d = 1 + q + q^3 + q^{12}$$
.

It is
$$F(X) = XX^q X^{q^3} X^{q^{12}}$$
 and thus
 $X^q X^{q^3} X^{q^{12}} F(X)^{q^{13}} + X^{q^{13}} X^{q^{14}} X^{q^{16}} F(X)$
 $X^q X^{q^3} X^{q^{12}} \left(XX^{q^{13}} X^{q^{14}} X^{q^{16}} \right) + X^{q^{13}} X^{q^{14}} X^{q^{16}} \left(XX^q X^{q^3} X^{q^{12}} \right) = 0.$

Example CryptoChallenge 11

- Base field \mathbb{F}_{2^4}
- Large field $\mathbb{F}_{2^{100}}$, i.e. an extension of degree 25.

►
$$d = 1 + q + q^3 + q^{12}$$
.

It is
$$F(X) = XX^q X^{q^3} X^{q^{12}}$$
 and thus
 $X^q X^{q^3} X^{q^{12}} F(X)^{q^{13}} + X^{q^{13}} X^{q^{14}} X^{q^{16}} F(X)$
 $X^q X^{q^3} X^{q^{12}} \left(XX^{q^{13}} X^{q^{14}} X^{q^{16}} \right) + X^{q^{13}} X^{q^{14}} X^{q^{16}} \left(XX^q X^{q^3} X^{q^{12}} \right) = 0.$

The degree of regularity is 7 and we have the following

Corollary

Cryptochallenge 11 can be broken in running time $\mathcal{O}\left(\binom{25+7}{25}^{2,373}\right) \approx 2^{52}$ and with a required memory of $\mathcal{O}\left(\binom{25+7}{25}^2\right) \approx 1,3$ Tb.

Corollary

Cryptochallenge 11 can be broken in running time $\mathcal{O}\left(\binom{25+7}{25}^{2,373}\right) \approx 2^{52}$ and with a required memory of $\mathcal{O}\left(\binom{25+7}{25}^2\right) \approx 1,3$ Tb.

Q When Dobbertin and I developed this challenge in 2005 we were convinced that biquadratic C^* is strong in general.

Preliminaries

From C^* to biquadratic C^*

The Attack

Further Research

Further Research/Work in Progress

Proof a strong bound on D with the help of the above used syszygies directly for these simple bijective power mappings to better understand the degree of regularity.

Further Research/Work in Progress

Proof a strong bound on D with the help of the above used syszygies directly for these simple bijective power mappings to better understand the degree of regularity.

Any questions?

